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OPTIMIZATION OF THE BOUNDARY REGIME IN THE PROBLEM OF THE TRANSFER 
AND ABSORPTION OF MATERIAL IN A POROUS MEDIUM* 

N.A. TIKHONOV 

Problems of optimizing the mode of supplying a materail to the surface of 
a porous medium are considered for the case when the material is carried 
by a flow passing through the medium, and is partly absorbed by it. Such 
a problem arises e.g. when fertilizers are placed on the surface of soil, 
or when chemical components are supplied to the boundary of a medium 
within which a reaction with absorption takes place. 

Let us consider, to be specific, the problem of the transport of fertilizers in soil. 
Their transport will'be governed by the flow of moisture. The dynamic behaviour of the 
moisture in a layer of soil O<z<l is described by the problem 

u, - Q: = --p (2, 0; g I,+, = go (0, R (9, 4 ltxl = 0, u ltzO = cp Cd (11 

Here t is the time, z is the vertical coordinate (z= 0 at the surface of the medium), 
u is the moisture density, q is its flux, oO(f) is a given function determined by the precipita- 
tion, watering and evaporation from the soil surface, R is an operator describing the boundary 
conditions when Z= 1. F(i.11 is the amount of moisture demanded by the plant roots. 

Let a layer of material A, in crystalline form, be present at the soil surface at the 
time f>O. We denote the concentration of dissolved material in water passed through this 
layer by X(I). In the linear approximation we have 

where f)(t) is the exchange coefficient between the solid and liqud phase of A, depending on 
the amount of material present at the surface in crystalline form, and C,=const is the 
saturation concentration of A. 

The dynamics of the material transported by the moisture is described by the problem 

L (c. u) = @; % (OH (90 (01 = R, (c, g,) IrcO (3) 

R, (c. g) /-_=; = (1. c lfeO = 0 

where c is the concentration cf the rr.aterial in water, L is a differential operator describing 
the transport, diffusion and scrpticn cf the nateria 1 A depending on the flow q and the 
moisture density U. R, and R, detemine the boundary conditions. For example, R, (c. g) = gc - 
c (q)c:. R, (c. g, = c; where o(q) is the diff.Jsicn coefficient. 

Since the experinectal data are no t very acczatc due to the inhomogeneity of the soil, 
it is usualiy sufficient to consider the aodeis tc be linear In c 111. We shall assume L,Rl 
and R, to be linear in c, and that a scl,Jtion of problen (l), (2: exists,isunique, non-negative 

at any Z>", - ano that tne inte;ra 1 [c(;.fld' is bounded, provided that the amount of material 
6 

- 
passeo intc the ned.i;r. frc-. the s,zface 

is finite. The relaticns (l,-:?) constitute a model of the process. 
Let us assume that the surface can be covered by a layer of crystalline material A of 

differing density, i.e. that f)(t) varies within certain limits O< p(r)% &,,= con&. Let the 
plants require the material and water, and let the function F be bounded. Then the amount 

of material required over the time T will be 
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At the same time, the consumption of the material at the surface will be 

Let us formulate the following optimization problem. It is required to determine the 

control function u(1). varying within the limits shown, for which the demand Q is equal to the 

given value QO, and the consumption P is minimal. We shall assume here that the quantity Q0 

satisfies the inequality O<Qo<Qm where Q,,, is the value of Q at B- &,,. 
Let us denote by G(z,~,T) the solution of the problem (1)) (3) with boundary condition 

R, (c, 1) = 6 (L - r). Problem (3) is linear in c, and therefore for any X we have 

t 
c (2, I) = ix WH (90 (7)) G (2. 1, r)dr 

0 

Substituting this relation into the expression for Q and changing the order of integration, 
we obtain 

Q=STx(l)H(pol~))B(T)dr; B(r)=~dr~F(i,f)C(r,r,~)d2 (4) 
0 0 0 

According to the condition 

therefore O< B<m. Consider the functional 

0 

where A is an arbitrary fixed number. For a given value of Q, the minimum of P and I is 
attained on the same curves. Let us denote by T, the set of t for which clO(f)= 0; T+(i.) the set 
of t for which 90(lj>0 and B(t)>%; T-(i.) the set of t for which pO(f)>O and B(r)<;.. 

The value of X on the set To does not affect (4) and (5). When Q~>o, we have from (2) 
X = Bco (B $ 9cJ-' , which is a monotonically increasing function of p. It is clear that the value 
of (5) will be minimal at any b, provided that X = 0 on T- (i.) and X = Xn, (I) = c&,, (pn; -+ 9O (t))-1 

when 1~ T-(i.:. We choose, respectively, p= (1 on the set T- (A) and fi = pm or T+(k), and here 
we have Q = j(i.) = \ x,&BdT. 

T-t 1 

When 1. increases, the set T'(i.) does not grow larger, therefore j(i.) is a monotonicaily 
non-increasing function. Generally speaking, f(i.1 wili not be a continuous function here. 

T 

When %>(I, T-&j=0 and i 0.) = 1 x,g& do > Qa, in accordance with the condition. Since B is bounded 
0 

when L-m, the set T' (i.) = 0 and f (i) = 0 < QO. Therefore a number ?.(I can be found such, that 
either 1 (i.,) = Q0 or 1 (i.,) > Qu. I (i., - (11 < QL. the function I (i.1 has a discontinuity at the point 

and B (I) = ku on the finite set 
Glds for B(f) = p, 

T,O = T- (i.,) - T- (i." : (1). In the first case the condition Q= Q0 
when 2 E 7+ (i.,l and p,,, = 11 when t E T- ii.,) , and a strong minimum cf the 

functional (4: is attained in the class of admissible variations in ,?. The second case differs 
in the fact that the function f, on the set T;., must satisfy the relation 

(6) 

As a result, we have the fcliowing theorerr. 

Theorem. A solution of the optimization problem in question exists, and is represented 
by the function (j(t) of admissible class, furnishing a minimum to the functional P at fixed 

Q = 00. The function is detemined as follows: j3(f, = p,, for t E 7- (;.,I = (1 : go (1) > 0, E (I) < &): 
fl (II = 0 for f E T- (i.,l = (t : pO (11 > (1. B (11 > Lo:; P (II is arbitrary for 1 E T, = (t : q0 (ti = 0): p (TV and 
satisfies relation (6), otherwise it is arbitrary for in T,,= (f : qa (t) > 0, B (II = Lo); A, is a 
number (it exists and is real! such, that 

The soliltion of the problerr. is mique on the set 

(1 : go It, > 0. B (11 = iu} 



532 

To find the set T'(h), we must determine the function B(T). It can be done, in general, 
numerically. It often happens however, when the experimental results show a considerable 
spread caused by the spatial inhomogeneity of the medium, that relatively simple models are 
found to offer better agreement with the experimental results , and we can obtain an analytic 
solution for them. 

Let us consider the following case. We shall be describing the dynamics of the moisture 
and salt fluxes averaged over several days. Let q= b(u- u,) where b and uO are constants 
and qo(r) exceeds the total demand for the moisture by the roots, i.e. q> 0 everywhere. In 
accordance with (2) we put L (c,u)= mq+ qc,- aci2 where a= aOp' is the coefficient of diffusion 
of the material A, a, and m are constants and R,= qc- OCR, Considering, for simplicity, the 
problem on the segment O<z<a,t>--cc, we obtain 

bq, + q, = - F (i. t), Q/,=,=qo(U (7; 

‘“Cf t qcx = aoqc*z. c/t<0 = x /I<0 = 0 

We solve the problem for q and introduce the function 

z.(.-. f. T)= S*(:_ @de = E jQ~(e--t;)-_S~(l e-6+f*j de 
c 

'I 'I 0 

18’ 

We regard I' and z as new variables, and 'I as a parameter. Then the equation for c in 
(7) will be transformed into an equation with constant coefficients. In the present case 
G f:. i. T) = ii (:. 1.4;. 1. nil where 6 (2. 2) satisfies the relation 

mli, 7 ii;= uorc';,: r>-w-, n<,<u 

.6 I x<o = ii. (6 - a&,) jzso = 5 (3) 

Solving this problem we find G, and obtain the following expression for B: 

Thus the relation 311 determined by the form of the function F,gjul and of the operators 

L,J?. R,.R,. is obtained in the present case in analytic form. To find the optimal conditfonc 

of supply of the material, we mUst have specific expressions for the functions pu (li and f il. 0 

Knowing qs and F, we find I. from (6!, ant? then B from (9). Further, acccrding to what was 

said above, we firrd i., ar,r: the optimal mode for B (11. 
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